Journal of Organometallic Chemistry, 385 (1990) 351-361 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20476

Synthese und Reaktionen von (CO)₅Mo[C(Aryl)H]

Helmut Fischer * und David Reindl

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz 1 (B.R.D.) (Eingegangen den 2. Oktober 1989)

Abstract

The pentacarbonyl(α -ethoxybenzyl)molybdates NEt₄{(CO)₅Mo[C(OEt)(C₆H₄Rp)H]} react with HBF₄ · Et₂O by abstraction of the ethoxy group to give the benzylidene complexes (CO)₅Mo[C(C_6H_4R-p)H] (R = Me (2a), OMe (2b)). The compounds 2 are thermally very labile and react rapidly even at -100 °C with a number of nucleophiles. The addition of PPh₃ to the benzylidene carbon atom of 2a gives the ylide complex $(CO)_5Mo[C(PPh_3)(C_6H_4Me-p)H]$ and that of PPh₂Cl gives the phosphine complex $(CO)_5MoP[C(Cl)(C_6H_4Me-p)H]Ph_2$ under rearrangement. The reaction of **2b** with PPhCl₂ stereoselectively gives RS/SR-(CO)₅Mo{P(Ph)(Cl)- $[C(Cl)(C_{e}H_{4}OMe-p)H]$ and with $[XCN]^{-}(X = S, Se)$ gives the heterobenzaldehyde complexes (CO) $Mo[X=C(C_6H_4OMe-p)H]$ (X = S (6b), Se (7b)). The thioacrylamide complex (CO)₅Mo[S=C(NEt₂)C(Me)=C(C₆H₄OMe-p)H] is obtained from the reaction of **6b** with MeC=CNEt₂. The [4 + 2]-cycloaddition of **7b** with cyclopentadiene gives a (CO), Mo-coordinated selenanorbornene derivative. Cyclopropanation is observed in the reaction of 2b with cyclopentadiene. The resulting bicyclo[3.1.0]hexene which is coordinated to (CO)₅Mo via the C=C bond can be cleaved off the metal by air.

Zusammenfassung

Die Pentacarbonyl(α -ethoxybenzyl)molybdate NEt₄{(CO)₅Mo[C(OEt)(C₆H₄R-p)H]} reagieren mit HBF₄·Et₂O unter Abspaltung der Ethoxygruppe zu den Benzyliden-Komplexen (CO)₅Mo[C(C₆H₄R-p)H] (R = Me (**2a**), OMe (**2b**)). Die Verbindungen **2** sind thermisch sehr labil und reagieren bereits bei – 100 °C rasch mit einer Reihe von Nukleophilen. Die Addition von PPh₃ an das Benzylidenkohlenstoffatom von **2a** ergibt den Ylid-Komplex (CO)₅Mo[C(PPh₃)(C₆H₄Me-p)H] und die von PPh₂Cl, über eine Umlagerung, den Phosphan-Komplex (CO)₅Mo[C(Cl)(C₆H₄Me-p)H]Ph₂. Die Reaktion von **2b** mit PPhCl₂ führt stereoselektiv zu RS/SR-(CO)₅Mo{P(Ph)(Cl)[C(Cl)(C₆H₄OMe-p)H]} und die mit [XCN]⁻ (X = S, Se) gibt Heterobenzaldehyd-Komplex (CO)₅Mo[X = C(C₆H₄-OMe-p)H] (X = S (**6b**), Se (**7b**)). Den Thioacrylamid-Komplex (CO)₅Mo[S=C-

 $(NEt_2)C(Me)=C(C_6H_4OMe-p)H]$ erhält man durch Umsetzung von 7b mit MeC=C-NEt₂ und ein $(CO)_5$ Mo-koordiniertes Selenanorbornen-Derivat durch [4 + 2]-Cycloaddition von Cyclopentadien an 7b. Die Reaktion von 2b mit Cyclopentadien verläuft unter Cyclopropanierung. Das resultierende Bicyclo[3.1.0]hexen, das über die C=C-Bindung an das $(CO)_5$ Mo-Fragment gebunden ist, lässt sich mit Luft intakt vom Metall ablösen.

Einleitung

Carben-Komplexe sind als potentielle Zwischenstufen bei mehreren katalytischen Prozessen (wie z.B. Olefin-Metathese, Alkin-Polymerisation, Cyclopropanierung) und als Ausgangsverbindungen für die Synthese anderer Komplextypen sowie dem rationellen Aufbau verschiedener organischer Verbindungen von Interesse [1]. Als für die Synthese von organischen Verbindungen besonders nützlich erwiesen sich Carben-Komplexe von Metallen der 6. Nebengruppe [2]. Die Reaktivität und die Art der Reaktionsprodukte variieren allerdings häufig stark mit den Substituenten am Carbenkohlenstoffatom, dem Zentralmetall und der Oxidationsstufe des Metalls.

Kürzlich gelang uns die Reindarstellung und Charakterisierung von extrem elektrophilen Benzyliden(pentacarbonyl)chrom- und -wolfram-Komplexen, $(CO)_5M[C(C_6H_4R-p)H]$ (M = Cr, W; R = CF₃, Br, H, Me, OMe) [3]. Der Komplex $(CO)_5W[C(Ph)H]$ konnte bereits früher von Casey et al. [4] im NMR-Röhrchen erzeugt, jedoch wegen der hohen Thermolabilität nicht isoliert werden. Wir synthetisierten nun Benzyliden(pentacarbonyl)molybdän-Komplexe und untersuchten deren Reaktivität vergleichend mit der der entsprechenden Chrom- und Wolframverbindungen.

Darstellung von $(CO)_5 Mo[C(C_6H_4R-p)H]$ (R = Me, OMe)

Versetzt man Lösungen der *para*-substituierten Pentacarbonyl(α -ethoxybenzyl)molybdate **1a** bzw. **1b** (darstellbar aus $(CO)_5 Mo[C(C_6H_4R-p)OEt]$ und Na[HB- $(OMe)_3$] (1/1) in THF bei – 30 °C und Umfällen mit [NEt₄]Br) in Methylenchlorid bei – 90 °C mit HBF₄ · Et₂O, dann färbt sich die ursprünglich gelbe Lösung augenblicklich unter Bildung der Benzyliden(pentacarbonyl)molybdän-Komplexe **2a,b** tiefrot (Schema 1). Die Stabilität der Verbindungen ist jedoch nur gering. Unter den Reaktionsbedingungen zersetzt sich auch der vergleichsweise stabilere Komplex **2b** innerhalb von ca. fünf Sekunden, die Lösung färbt sich braun. Im Gegensatz dazu sind die entsprechenden Wolframkomplexe unter analogen Bedingungen selbst bei – 70 °C über viele Stunden haltbar.

Durch Erniedrigen der Synthesetemperatur auf -110 °C und Zugabe von vorgekühltem Pentan zur Reaktionslösung unmittelbar nach der Umsetzung von 1 mit HBF₄ · Et₂O kann die Geschwindigkeit der Zersetzung von 2 deutlich verringert werden. Bereits bei den analogen Wolframkomplexen war festgestellt worden, dass die Thermolysegeschwindigkeit stark solvensabhängig ist und sich mit abnehmender Polarität des Lösungsmittels verringert [5]. In Pentan/Dichlormethan-Solvensgemischen sind die Komplexe 2 bei -100 °C einige Stunden haltbar.

Bei der Chromatographie an Kieselgel trat innerhalb kurzer Zeit vollständige Zersetzung ein, so dass sich 2a und 2b nicht in reiner Form isolieren liessen. Sie

wurden daher IR-spektroskopisch [ν (CO) bei -80° C in Pentan/CH₂Cl₂ (2/1): 2075s und 1968vs,br cm⁻¹ (2a); 2071s und 1968vs,br cm⁻¹ (2b)], anhand ihrer Farbe und durch Folgereaktionen nachgewiesen.

Bei der Thermolyse von 2 entstehen unter anderem die *para*-substituierten *trans*-Stilbene. Die IR-Spektren deuten darauf hin, dass zusätzlich – ebenso wie bei der thermischen Zersetzung von $(CO)_5W[C(Aryl)H]$ in inerten Solvenzien [3,5] – μ -benzyliden-verbrückte binukleare Komplexe [$(CO)_5Mo$]₂[μ -C(C₆H₄R-p)H] gebildet werden.

Reaktionen von $(CO)_5$ Mo $[C(C_6H_4R-p)H]$ mit Phosphanen

Charakteristisch für elektrophile Carben-Komplexe ist deren Fähigkeit, Nukleophile Nu an das Carbenkohlenstoffatom zu addieren. $(CO)_5W[CPh_2]$ zum Beispiel reagiert bereits bei tiefen Temperaturen mit Nu (Nu = PPh₃, PBu₃ [4], P(OMe)₃, AsPh₃, SbPh₃ [6] oder SR₂ [7]) rasch zu den Addukten (CO)₅W[C(Nu)-(Ph)H]. Die Reaktion von **2a** mit PPh₃ verläuft analog unter Bildung des Ylid-Komplexes **3a** (Schema 1). Das IR-Spektrum von **3a** im ν (CO)-Bereich ist vergleichbar mit denjenigen von (CO)₅W[C(PPh₃)(Ph)H] [4] und (CO)₅W{C[P-(OMe)₃](Ph)H} [6]. Durch die Addition von PPh₃ an das Carbenkohlenstoffatom wird in beträchtlichem Mass Elektronendichte auf das Pentacarbonylmolybdän-Fragment übertragen. Infolgedessen sind die ν (CO)-Absorptionen stark zu niedrigeren Wellenzahlen verschoben. Die Resonanz des α -CH-Atoms und die ²J(PH)-Kopplungskonstante (14.6 Hz) entsprechen den Erwartungen.

Anders als bei der Umsetzung von 2a mit PPh₃ wurden bei den Reaktionen von 2a mit PPh₂Cl bzw. von 2b mit PPhCl₂ nicht Ylid-Komplexe, sondern die Phosphan-Komplexe 4a bzw. 5b (Schema 1) isoliert. Die Bildung von 4a und 5b lässt sich über eine Addition des Phosphans an das Carbenkohlenstoffatom im ersten Schritt und eine nachfolgende C,P-Wanderung des Pentacarbonylmolybdän-Fragments

sowie eine P.C-Wanderung von Chlorid verstehen. Diese Erklärung wird durch die Beobachtungen bei den ensprechenden Wolframkomplexen untermauert: Primärprodukt der Reaktion von zum Beispiel (CO)₅W[C(C₆H₄Me-p]H) mit Dichlorphenylphosphan ist der isolierbare Ylid-Komplex $(CO)_{5}W[C(PPhCl_{2})(C_{6}H_{4}Me-p)H]$ (A), der in einer langsameren Folgereaktion zum Phosphan-Komplex $(CO)_{s}WP[C(Cl)(C_{s}H_{4}Me-p)H][Ph]Cl (B)$ isomerisiert [8]. Die $\nu(CO)$ -Spektren der Ylid- und der Phosphan-Komplexe unterscheiden sich stark: die Absorptionen der Phosphan-Komplexe liegen bei beträchtlich höherer Energie. Die CO-Streckschwingungen von 4a und 5b sind vergleichbar mit denen von Phosphan-Komplexen wie B, nicht jedoch mit denen von A oder 3a. Die Formulierung von 4a und 5b als Phosphan-Komplex wird zusätzlich durch die Resonanz des $C(C_6H_4R_p)$ H-Atoms im ¹³C-NMR-Spektrum (57.9 (4a) bzw. 66.7 ppm (5b); zum Vergleich: 26.8 ppm in (CO),W[C(PPhCl,)(Ph)H] [8] und 67.8 ppm in (CO),W{P(Ph)[CH(Ph)Cl]Cl} [8]), die ³¹P-Resonanz von 5b (133.8 ppm; zum Vergleich: 58.9 ppm in (CO)₅W[C[P(OMe)₃](Ph)H] [6] und 109.3 ppm in (CO)₅W[C(PPhCl₂)(Ph)H] [8]) und die ²J(PH)-Kopplungskonstanten (siehe unten) gestützt.

Die Ylid-/ Phosphan-Komplex-Umlagerung $\mathbf{A} \rightarrow \mathbf{B}$, bei der ein zweites Chiralitätszentrum entsteht, ist diastereospezifisch, es wird nur das RS/SR-Isomerenpaar gebildet. Diese Zuordnung konnte durch eine Röntgenstrukturanalyse gesichert werden [8]. In Gegenwart von Cl⁻ epimerisiert RS/SR-**B** bis zu einem Gleichgewichtszustand. RS/SR-**B** und RR/SS-**B** unterscheiden sich zwar nur geringfügig in der Resonanz des PCH-Atoms (6.04 bzw. 6.06 ppm), jedoch deutlich in der ²J(PH)-Kopplungskonstante (3.9 bzw. 10.3 Hz) [8].

Aufgrund des ¹H-NMR-Spektrums von **5b** wird bei der Reaktion von **2b** mit PPhCl₂ ebenfalls nur ein Enantiomerenpaar gebildet. Die ²J(PH)-Kopplungskonstante von 4.1 Hz bei **5b** spricht dafür, dass es sich dabei – wie bei den Wolframverbindungen – um das RS/SR-Paar handelt. Eine Epimerisierung von RS/SR-**5b** in Gegenwart von [NBu₄]Cl in CH₂Cl₂ konnte bei **5b** allerdings nicht beobachtet werden.

Die Ylid-/Phosphan-Komplex-Umlagerung muss bei den Molybdänkomplexen wesentlich rascher erfolgen als bei den Wolframverbindungen. IR-spektroskopisch konnten auch bei tiefen Temperaturen keine Hinweise mehr erhalten werden, dass in den Reaktionslösungen 2a/PPh₂Cl und 2b/PPhCl₂ Ylid-Komplexe vorliegen.

Reaktionen von $(CO)_5$ Mo $[C(C_6H_4OMe-p)H]$ mit $[XCN]^-$ (X = S, Se)

Benzyliden-Komplexe von Chrom und Wolfram reagieren mit Thiocyanat und Selenocyanat unter Einschiebung des Schwefel- bzw. Selenatoms in die Metall-Carbenkohlenstoff-Bindung zu den entsprechenden Heterobenzaldehyd-Komplexen. Die Umsetzung von **2b** mit KSCN führt bereits bei -100° C praktisch augenblicklich zum Thiobenzaldehyd-Komplex **6b** (Schema 2). Bei den analogen Chrom- [9] und Wolfram-Komplexen [10] ist der Thiobenzaldehydligand über eines der beiden freien Elektronenpaare an das Zentralmetall gebunden (η^{1} -Form), beim unsubstituierten Wolframkomplex (CO)₅W[S=C(Ph)H] [9] beobachtet man dagegen ein dynamisches solvens- und temperaturabhängiges Gleichgewicht zwischen den beiden η^{1} -(E und Z)-Isomeren und dem η^{2} -Isomer (Bindung des Aldehyds über die S=C- π -Bindung) (Gleichgewichtskonstante $K(\eta^{1}/\eta^{2}) = 3.4$ in Hexan bei 23°C [9]). IR-spektroskopisch sind die beiden isomeren Formen gut unterscheidbar. Aufgrund

der ν (CO)-Spektren liegen bei der Molybdänverbindung **6b** in Hexan ausschliesslich die (beiden) η^1 -Isomeren vor, die Konzentration des η^2 -Isomers liegt unterhalb der Nachweisgrenze. Mit [NEt₄]SeCN in CH₂Cl₂ reagiert **2b** bei -100 °C ebenfalls augenblicklich. Der resultierende, tiefblau gefärbte Komplex **7b** (Schema 2) ist zwar wesentlich labiler als **6b**, durch schnelles Filtrieren über Kieselgel lässt sich jedoch eine Lösung von **7b** erhalten, die hinreichend stabil ist und für weitere Umsetzungen verwendet werden kann.

Bei der Chromatographie von 7b mit Petrolether/Dichlormethan an Kieselgel erfolgte partielle Zersetzung, so dass die Isolierung von 7b in reiner Form scheiterte. Bei der Zersetzung entstand aufgrund des IR-Spektrums unter anderem die dem zweikernigen, Selenobenzaldehyd-verbrückten Wolframkomplex $[(CO)_5W]_2[\mu$ -Se=C(Ph)H] [11] verwandte Molybdänverbindung. Sie wurde nicht isoliert.

IR-spektroskopisch lässt sich bei 7b (2070m, 1955vs, 1945sh cm⁻¹, in Hexan) ausschliesslich die η^1 -Form nachweisen, das η^1/η^2 -Gleichgewicht liegt also ganz auf der Seite der η^1 -Isomere. Im Gegensatz dazu liegen beim analogen Wolframkomplex die η^1 -Isomeren und das η^2 -Isomer nebeneinander vor, die η^1/η^2 -Gleichgewichtskonstante beträgt bei -5.7 °C in Toluol 4.07 [12]. Mit einem Überschuss von Cyclopentadien reagiert 7b bereits bei -100 °C innerhalb von Sekunden zum Selenanorbornen-Derivat 8b. Diese [4 + 2]-Cycloaddition verläuft beträchtlich rascher als bei den Selenobenzaldehyd-Komplexen von Chrom und Wolfram [13]. Nach Chromatographie und Umkristallisieren lässt sich 8b isomerenrein erhalten. Aus dem IR-Spektrum folgt, dass der bicyclische Ligand in 8b über das Selenatom und nicht über die C=C-Doppelbindung mit dem Pentacarbonylmolybdän-Fragment verknüpft ist. Der Vergleich des ¹H-NMR-Spektrums von 8b mit den Spektren für die *exo*- und *endo*-Isomere der Cycloaddukte aus (CO)₅W[Se=C(Ph)H] und Cyclopentadien bzw. Pentamethylcyclopentadien (die Struktur des *endo*-Isomers wurde durch eine Röntgenstrukturanalyse gesichert [13d]) sowie für die beiden

isomeren Formen des unkomplexierten 3-Phenyl-2-selenabicyclo[2.2.1]hept-5-en [14] ergibt, dass in dem isolierten Komplex 8b die Phenylgruppe die exo-Position einnimmt. Aus dem ¹H-NMR-Spektrum des Reaktionsgemisches folgt. dass das Produktverhältnis exo-8b/endo-8b grösser als 19 sein muss. Die Stereoselektivität der Addition von Cyclopentadien an 7b ist damit wesentlich stärker ausgeprägt als bei den Additionen an $(CO)_{S}Cr[Se=C(Ph)H]$ (exo/endo = 2.6) und $(CO)_{S}W[Se =$ C(Ph)H (exo / endo = 7.1) [13c,d]. Der Thiobenzaldehyd-Komplex **6b** reagiert mit 1-N, N-Diethylaminopropin-1 bei -100 °C ebenfalls bereits innerhalb weniger Sekunden. Die Bildung des Thioacrylamidderivats 9b (Schema 2) entspricht der Reaktion des gleichen Alkins mit (CO) M[X=C(Ph)H] (M = Cr, W: X = S, Se) [15]. verläuft allerdings schneller. Sie lässt sich als [2 + 2]-Cycloaddition der C=C-Dreifachbindung des Alkins an die S=C-Doppelbindung von 6b und nachfolgende elektrocyclische Ringöffnung verstehen. Die Addition ist regiospezifisch, die Ringöffnung stereospezifisch. Aus den ν (CO)-Spektren folgt, dass der Thioacrylamidligand η^1 -gebunden ist. Das ¹H-NMR-Spektrum lässt darauf schliessen, dass (wie bei den entsprechenden Chrom- und Wolframkomplexen) die E-Konfiguration bezüglich der C=C-Doppelbindung vorliegt (Me und Ph cis, an (CO) W[Se=C-(NEt₂)C(Me)=C(Ph)H durch eine Röntgenstrukturanalyse bestätigt [15c]).

Reaktion von 2b mit Cyclopentadien

Deutlich langsamer verläuft die Reaktion von **2b** mit einem Überschuss von Cyclopentadien bei -80 °C. Die Bildung des Olefin-Komplexes **10b** (Schema 3) erfordert etwa drei Stunden. Er wurde nicht isoliert, sondern nur IR-spektroskopisch nachgewiesen. Das ν (CO)-Spektrum von **10b** (2082w, 1961vs, 1945sh cm⁻¹, in Hexan) ist den Spektren der Komplexe, die bei der Reaktion von (CO)₅M[C(C₆H₄-

OMe-p)H] (M = Cr, W) mit Cyclopentadien gebildet werden [16], sehr ähnlich. Die Struktur des Chromkomplexes konnte durch eine Röntgenstrukturanalyse gesichert werden. Danach liegt in dieser Verbindung ein über die C=C-Doppelbindung an Chrom gebundenes Bicyclo[3.1.0]hexen vor, das durch die Addition des Carbenliganden an eine der beiden C=C-Doppelbindungen des Cyclopentadiens entsteht. Der Fünfring ist nahezu planar, das (CO)₅Cr-Fragment und die C(Aryl)H-Brücke sind zueinander transoid angeordnet, die C₆H₄OMe-Gruppe nimmt die *endo*-Position ein [16].

Der Bicyclus lässt sich durch Stehenlassen der Lösung von **10b** an Luft bzw. mit Bromid (Cr, W) vom Zentralmetall ablösen. Die ¹H-NMR- und ¹³C-NMR-Spektren der so erhaltenen nicht-komplexierten Bicyclen sind identisch. Obwohl damit nicht ausgeschlossen werden kann, dass in **10b** "(CO)₅Mo" und die C(C₆H₄OMe)H-Brücke zueinander cisoid sind, ist trotzdem aufgrund sterischer Überlegungen anzunehmen, dass **10b** die beim Chromkomplex gefundene Struktur aufweist.

Schlussfolgerung

Die Ergebnisse zeigen, dass Benzyliden(pentacarbonyl)-Komplexe von Molybdän nach dem gleichen Reaktionsschema wie die analogen Chrom- und Wolframverbindungen hergestellt werden können, allerdings wesentlich thermolabiler sind. Während sich die Chrom- und Wolframverbindungen in reiner Form noch isolieren lassen, gelang dies bei den Molybdänkomplexen nicht mehr. Mit der erhöhten Labilität einher geht eine gesteigerte Reaktivität gegenüber nukleophilen Agenzien. Sie dürfte im wesentlichen auf die vergleichsweise geringere Rückbindungsfähigkeit des $(CO)_5$ Mo-Fragments zurückzuführen sein. Dies wird bei den Reaktionen besonders deutlich, bei denen ein nukleophiler Angriff des Substrats am Ligandensystem geschwindigkeitsbestimmend ist (z.B. die Reaktionen von 2b mit Cyclopentadien, von 6b mit MeC=CNEt₂ oder von 7b mit Cyclopentadien). Insgesamt unterscheiden sich die Benzyliden-Komplexe von Chrom, Molybdän und Wolfram in ihrem Reaktionsverhalten nicht grundsätzlich.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluss von Luft und Feuchtigkeit in N₂-Atmosphäre durchgeführt. Die verwendeten Lösungsmittel waren getrocknet (Na, P₄O₁₀, CaH₂) und ebenso wie das zur Chromatographie verwendete Kieselgel (Merck Nr. 60, 0.062–0.2 mm) mit Stickstoff gesättigt. Als Petrolether wurde eine niedrigsiedende Mischung von Alkanen (35–60°C) verwendet. Die Ausbeuten beziehen sich auf analysenreine Substanzen und sind nicht optimiert. Die Ausgangskomplexe (CO)₅Mo[C(C₆H₄R-*p*)OEt] wurden – wie in [17] für (CO)₅W[C(C₆H₄R-*p*]OMe] beschrieben – aus Mo(CO)₆, LiC₆H₄R-*p* und [Et₃O]BF₄ hergestellt. MeC=CNEt₂ [18] und NEt₄[SeCN] [19] wurden nach Literaturangaben, Cyclopentadien durch Cracken von Dicyclopentadien dargestellt. Alle anderen Chemikalien waren handelsüblich. Wenn nicht anders angegeben, sind die NMR-Spektren bei Raumtemperatur aufgenommen und die Resonanzen auf den jeweiligen Lösungsmittelpeak bezøgen.

1. Tetraethylammonium-pentacarbonyl[α-ethoxy(p-methylbenzyl)]molybdat (1a)

Zu einer Lösung von 3.84 g (10 mmol) (CO)₅Mo[C(C₆H₄Me-*p*)OEt] in 200 ml THF tropft man bei -30 °C so lange eine Lösung von Na[HB(OMe)₃] in THF, bis sich die ursprünglich rote Lösung gelb gefärbt hat. Anschliessend werden 30 ml wässr. 1*N* NaOH und 10 ml wässr. 2*M* [NEt₄]Br zugegeben. Nach Entfernen von THF im Hochvak. (die Temperatur darf dabei 0 °C nicht überschreiten) wird die zurückbleibende Aufschlämmung des gelben Feststoffs über eine gekühlte Fritte filtriert. Nach mehrmaligem Waschen des Rückstands mit gekühltem Wasser und Diethylether erhält man nach dem Trocknen **1a** als gelbes Pulver, das sich bei Raumtemp. an Luft rasch zersetzt und nicht analysenrein erhalten werden konnte. Ausb. 30–40%. IR (THF) ν (CO): 2039vw, 1904vs, 1846m cm⁻¹. ¹H-NMR (CD₃COCD₃, 90 MHz): $\delta = 1.01$ (t, ³*J* = 7.0 Hz, OCH₂CH₃), 1.33 (tt, ³*J* = 8.1 Hz, *J* = 1.6 Hz, NCH₂CH₃), 2.14 (s, *p*-Me), 3.13 (q, ³*J* = 7.5 Hz, OCH₂), 3.25 (q, ³*J* = 7.5 Hz, OCH₂), 3.64 (q, ³*J* = 8.4 Hz, NCH₂), 5.28 (s, α -CH), 7.1–7.4 (m, C₆H₄). C₂₃H₃₃MoNO₆; Mol.-Gew. 515.5.

2. Tetraethylammonium-pentacarbonyl[α -ethoxy(p-methoxybenzyl)]molybdat (1b)

Die Darstellung erfolgt analog der von 1a. Gelbes, bei Raumtemp. an Luft sich rasch zersetzendes Pulver. Ausb. 60–70%. IR (THF) ν (CO): 2038w, 1903vs, 1846m cm⁻¹. ¹H-NMR (CD₃COCD₃, 80 MHz): $\delta = 1.08$ (t, ³J = 7.0 Hz, OCH₂CH₃), 1.39 (tt, ³J = 7.4 Hz, J = 1.8 Hz, NCH₂CH₃), 3.07 (q, ³J = 6.9 Hz, OCH₂), 3.16 (q, ³J = 6.9 Hz, OCH₂), 3.50 (q, ³J = 7.3 Hz, NCH₂), 3.66 (s, p-OMe), 5.00 (s, α -CH), 6.9–7.0 (m, C₆H₄). C₂₃H₃₃MoNO₇; Mol.-Gew. 531.5.

3. In-situ-Darstellung von $(CO)_5 Mo[C(C_6H_4R-p)H]$ (2)

Zu einer auf -110 °C gekühlten Lösung von 0.5 ml HBF₄ (54% ig in Et₂O) in 10 ml Dichlormethan wird unter kräftigem Rühren zügig eine Lösung von 1 g 1 in 50 ml CH₂Cl₂ von -110 °C gegossen. Die Lösung, die sich dabei tiefrot färbt, wird sofort mit 100 ml Pentan (-110 °C) verdünnt und in dieser Form für die weiteren Untersuchungen verwendet.

4. Pentacarbonyl[(triphenylphosphonio)-p-methylbenzylid]molybdän (3a)

Zu einer roten Lösung von **2a** (Herstellung siehe 3.) gibt man bis zur Entfärbung tropfenweise eine gesättigte Lösung von PPh₃ in Methylenchlorid. Entfernen des Solvens im Hochvak., Waschen des Rückstands mit Petrolether und anschliessend Umkristallisieren aus Dichlormethan ergibt **3a** als hellgelbes Pulver, das sich ohne zu schmelzen ab 110°C zu zersetzen beginnt. Der Komplex ist in CH₂Cl₂ und Et₂O löslich, nicht jedoch in Pentan. Ausb. 370 mg (30% bez. auf **1a**). IR (THF) ν (CO): 2043w, 1908vs, 1876m cm⁻¹. ¹H-NMR (CD₃COCD₃, 250 MHz): $\delta = 2.16$ (d, J(PH) = 2.1 Hz, *p*-Me), 4.10 (d, ²J(PH) = 14.6 Hz, α -CH), 6.8–7.0 (m, C₆H₄), 7.5–7.9 (m, Ph). Analyse: Gef.: C, 61.54; H, 3.88; C₃₁H₂₃MoO₅P ber.: C, 61.81; H, 3.85%; Mol.-Gew. 602.4.

5. Pentacarbonyl{diphenyl[α -chlor(p-methyl)benzyl]phosphan}molybdän (4a)

Zur roten Lösung von 2a (siehe 3.) wird bis zur Entfärbung Chlordiphenylphosphan getropft. Chromatographie mit Petrolether an Kieselgel bei -20° C und Umkristallisieren aus Pentan liefert 4a in Form farbloser Prismen. Ausb. 210 mg (16% bez. auf 1a). Schmp.: 129°C. IR (Hexan) ν (CO): 2076w, 1963vs, 1954vs, 1945s cm⁻¹. ¹H-NMR (CD₃COCD₃, 90 MHz): $\delta = 2.20$ (d, ⁷J(PH) = 1.6 Hz, *p*-Me), 6.24 (s, α -CH), 6.6–7.0 (m, C₆H₄), 7.4–8.0 (m, Ph). ¹³C-NMR (CDCl₃, -10 °C, Referenz: TMS, 63 MHz): $\delta = 21.2$ (s, *p*-CH₃), 59.7 (d, CHCl, J(PC) = 4.9 Hz), 128.0, 128.1, 128.5, 128.7, 128.8, 128.9, 129.0, 129.7, 131.1, 131.2, 131.5 (d, J(PC) = 2.1 Hz), 132.0 (d, J(PC) = 2.4 Hz), 135.5 (d, J(PC) = 12.4 Hz), 139.2 (d, J(PC) = 2.2 Hz) (C₆H₄ und Ph), 204.7 (d, *cis*-CO, J(PC) = 8.5 Hz), 209.9 (d, J(PC) = 25.6 Hz, *trans*-CO). Analyse: Gef.: C, 53.53; H, 3.20; C₂₅H₁₈CIMoO₅P ber.: C, 53.52; H, 3.23%; Mol.-Gew. 560.8.

6. R, S / S, R-Pentacarbonyl{[chlor][phenyl][α -chlor(p-methoxy)benzyl]phosphan}molybdän (5b)

Zur roten Lösung von **2b** (siehe 3.) wird bis zur Entfärbung Dichlorphenylphosphan gegeben. Nach Chromatographie mit Petrolether an Kieselgel bei $-20 \,^{\circ}$ C und Umkristallisieren aus Pentan erhält man hellgelbe Nadeln von **5b**. Ausb. 90 mg (7% bez. auf **1b**). Schmp. 66 $^{\circ}$ C. IR (Hexan) ν (CO): 2083w, 1971vs, 1966vs cm⁻¹. ¹H-NMR (CD₃COCD₃, 90 MHz): $\delta = 3.95$ (s, *p*-OMe), 6.10 (d, ²J(PH) = 4.1 Hz, α -CH), 6.9–7.4 (m, C₆H₄), 7.7–8.0 (m, Ph). ¹³C-NMR (CDCl₃, Referenz: TMS, 22.5 MHz): $\delta = 54.3$ (*p*-OCH₃), 66.7 (d, CHCl, J(PC) = 2.5 Hz), 112.4 (d, J(PC) = 1.7 Hz), 127.3, 129.4, 129.6, 130.0, 130.7, 130.8, 130.9, 132.4 (d, J(PC) = 18.9 Hz), 159.5 (d, J(PC) = 2.6 Hz) (C₆H₄ und Ph), 203.1 (d, *cis*-CO, J(PC) = 8.6 Hz), 207.4 (d, *trans*-CO, J(PC) = 35.3 Hz). ³¹P-NMR (CDCl₃, bez. auf 85%ige H₃PO₄, 162 MHz): $\delta = 133.8$. Analyse: Gef.: C, 42.56; H, 2.49; C₁₉H₁₃Cl₂MoO₆P ber.: C, 42.63; H, 2.43%; Mol.-Gew. 535.1.

7. Pentacarbonyl(p-methoxythiobenzaldehyd)molybdän (6b)

Zur auf -110 °C gekühlten Lösung von 2b wird unter kräftigem Rühren eine Lösung von 0.5 g KSCN in 10 ml Aceton von Raumtemp. gegeben. Es erfolgt augenblicklich ein Farbumschlag von Tiefrot nach Violett. Die Lösung wird über 3 cm Kieselgel filtriert, im Hochvak. eingeengt und mit Petrolether/CH₂Cl₂ (4/1) bei -20 °C an Kieselgel chromatographiert. Umkristallisieren aus Pentan ergibt 6b. Der Komplex ist in unpolaren und polaren Solvenzien gut löslich und in kristalliner Form bei Raumtemperatur einige Stunden haltbar. Beim Erwärmen zersetzt er sich rasch. Schwarze Kristalle. Ausb. 100 mg (14% bez. auf 1b). Zers. ab 30 °C. IR (Hexan) ν (CO): 2074m, 1964vs, 1955vs, 1941s cm⁻¹. ¹H-NMR (CD₃COCD₃, 80 MHz): $\delta = 3.97$ (s, *p*-OMe), 7.0–8.1 (m, C₆H₄), 11.25 (s, SCH). ¹³C-NMR (CDCl₃, -10 °C, Referenz: TMS, 63 MHz): $\delta = 55.9$ (*p*-OMe), 115.0, 132.2, 137.0, 165.4 (C₆H₄), 204.3 (*cis*-CO), 213.3 (*trans*-CO), 219.2 (S=C). Analyse: Gef.: C, 40.19; H, 2.13; Mol.-Gew. 390 (FAB-MS, ⁹⁸Mo). C₁₃H₈MoO₆S ber.: C, 40.20; H, 2.06%; Mol.-Gew. 388.2.

8. Pentacarbonyl(exo-3-p-methoxyphenyl-2-selena[2.2.1]bicyclohept-5-en)molybdän (8b)

Zur auf -110 °C gekühlten Lösung von 2b (siehe 3.) wird unter kräftigem Rühren eine Lösung von 0.5 g NEt₄[SeCN] in 10 ml CH₂Cl₂ von Raumtemp. gegeben. Die Lösung, die sich sofort unter Bildung von (CO)₅Mo[Se=C(C₆H₄OMe*p*)H] (7b) tiefblau färbt, wird mit 1 ml Cyclopentadien versetzt. Die Farbe der Lösung verändert sich innerhalb weniger Sekunden von Tiefblau nach Gelb. Nach Einengen im Hochvak. wird mit Petrolether/Dichlormethan (4/1) bei -20 °C an Kieselgel chromatographiert und die langsam laufende gelbe Zone aufgefangen. Nach Umkristallisieren aus Pentan erhält man hellgelbe Nadeln von **8b**. **8b** ist in polaren und unpolaren Solvenzien gut löslich und bei Raumtemp. in Lösung über Stunden stabil. Ausb. 60 mg (5% bez. auf **1b**). Schmp.: 68°C (Zers.). IR (Hexan) ν (CO): 2074w, 1989vw, 1952vs, 1936m cm⁻¹. ¹H-NMR (CD₂Cl₂, 250 MHz): $\delta = 2.09$ (d, ³J = 3.4 Hz, 7-anti-CH), 2.34 (d, ³J = 10.7 Hz, 7-syn-CH), 3.24 (s,br, 4-CH), 3.80 (s, p-OMe), 4.26 (d, ³J = 10.7 Hz, 3-CH), 4.71 (s,br, 1-CH), 6.33 (s,br, 5-CH), 6.60 (dd, ³J = 2.7 Hz, ³J = 5.5 Hz, 6-CH), 6.9-7.4 (m, C₆H₄). Analyse: Gef.: C, 43.07; H, 2.95; Mol.-Gew. 502 (FAB-MS, ⁹⁸Mo, ⁸⁰Se). C₁₈H₁₄MoO₆Se ber.: C, 43.09; H, 2.79%; Mol.-Gew. 501.2.

9. Pentacarbonyl(2-methyl-3-E-p-methoxyphenyl-thioacrylsäure-N,N-diethylamid)molybdän (9b)

Zur Lösung von **2b** (siehe 3.) gibt man bei -110° C eine Lösung von 0.5 g KSCN in 10 ml Aceton (vergl. 7.) und anschliessend so lange 1-*N*, *N*-Diethylaminopropin-1, bis sich die Lösung gelb gefärbt hat. Nach dem Einengen im Hochvak. wird bei -20° C mit Petrolether/Dichlormethan (3/1) an Kieselgel chromatographiert. Die langsam laufende gelbe Zone enthält **9b**. Umkristallisieren aus Pentan liefert gelbe Plättchen. Ausb. 100 mg (13% bez. auf **1b**). Schmp.: 91°C. IR (Hexan) ν (CO): 2072w, 1985vw, 1945vs, 1916m cm⁻¹. ¹H-NMR (CD₂Cl₂, 90 MHz): $\delta = 1.26$ (t, ³*J* = 7.3 Hz, NCH₂CH₃), 1.35 (t, ³*J* = 7.3 Hz, NCH₂CH₃), 2.20 (d, ⁴*J* = 1.5 Hz, =CMe), 3.82 (s, *p*-OMe), 3.7–4.2 (m, NCH₂), 6.42 (s, =CH), 6.9–7.5 (m, C₆H₄). ¹³C-NMR (CDCl₃, -10°C, Referenz: TMS, 63 MHz): $\delta = 18.5$ (=CCH₃), 10.9 und 14.1 (NCH₂CH₃), 46.4 und 49.4 (NCH₂), 55.3 (*p*-OCH₃), 113.8 (CMe), 127.5, 129.7, 130.6, 133.8 (C₆H₄), 158.9 (CPh), 202.2 (*cis*-CO), 204.9 (CNEt₂), 213.8 (*trans*-CO). Analyse: Gef.: C, 48.08; H, 4.24; N, 2.85; Mol-Gew. 501 (FAB-MS, ⁹⁸Mo). C₂₀H₂₁MoNO₆S ber.: C, 48.10; H, 4.24; N, 2.80%; Mol.-Gew. 499.4.

10. endo-6-p-Methoxyphenyl-bicyclo[3.1.0]hex-2-en (11b)

Die Lösung von **2b** (siehe 3.) wird bei -110 °C mit 5 ml Cyclopentadien versetzt und dann langsam auf -80°C erwärmt. Im Verlauf von 3 h verschwindet die rote Farbe der Lösung unter Bildung von 10b. Nach dreitägigem Stehen der Lösung bei Raumtemp. an Luft ist der Olefinligand abgespalten. Durch Chromatographie bei Raumtemp. an Kieselgel wird zunächst mit Petrolether Hexacarbonylmolybdän und dann mit CH₂Cl₂ 11b eluiert. Die weitere Reinigung erfolgt mittels HPLC (Hexan/ $CH_2Cl_2 9/1$, Porasil-Säule 19 · 150 mm). Man erhält ein farbloses Öl. Ausb. 40 mg (11% bez. auf 1b). MS: $m/e = 186 (M^+)$. ¹H-NMR (CDCl₃, 250 MHz, Referenz: TMS, Zuordnung basierend auf Doppelresonanzexperimenten): $\delta = 1.92$ (m, C(1)H, 1.99 (m, anti-C(4)H), 2.16 (dd, ${}^{3}J = 8.0$ und 7.8 Hz, C(6)H), 2.32 (m, C(1)H, 2.49 (ddt, J = 18.3, 7.4 und 1.8 Hz, syn-C(4)H), 3.75 (s, OMe), 5.15 (dd, ${}^{3}J = 4.3$ und 0.6 Hz, C(2)H), 5.72 (ddd, J = 5.5, 4.3 und 2.1 Hz, C(3)H), 6.9 (m, C₆H₄). ¹³C-NMR (CDCl₃, Referenz: TMS, Zuordnung aufgrund eines Gated-Decoupling-Experiments, J(CH) in Hz in eckigen Klammern, 63 MHz): $\delta = 21.7$ (dd, C(1), [170], [4]), 26.1 (d, C(6), [158]), 29.6 (ddd, C(5), [170], [12], [9]), 32.3 (t, C(4), [119]), 55.2 (q, OCH₃, [143]), 113.3 (dd, m-C, [165], [5]), 128.4 (t, ipso-C, [7]), 130.1 (dd, C(2) und C(3), [163], [12], [6]), 132.4 (dd, o-C, [160], [8]), 157.8 (s, p-C).C₁₃H₁₄O, Mol.-Gew. 186.5.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Untersuchungen und Herrn Prof. Dr. J.C. Jochims für das ¹³C-NMR-Spektrum von **11b**.

Literatur

- 1 K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert und K. Weiss (Hrsg.), Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, 1983.
- 2 (a) K.H. Dötz in ref. 1, S. 191; (b) K.H. Dötz, Angew. Chem., 96 (1984) 573; Angew. Chem. Int. Ed. Engl., 23 (1984) 587.
- 3 H. Fischer, S. Zeuner und K. Ackermann, J. Chem. Soc., Chem. Commun., (1984) 684.
- 4 (a) C.P. Casey und S.W. Polichnowski, J. Am. Chem. Soc., 99 (1977) 6097; (b) C.P. Casey, S.W. Polichnowski, A.J. Shusterman und C.R. Jones, J. Am. Chem. Soc., 101 (1979) 7282.
- 5 H. Fischer, S. Zeuner, K. Ackermann und J. Schmid, Chem. Ber., 119 (1986) 1546.
- 6 H. Fischer und J. Schmid, J. Organomet. Chem., 306 (1986) 203.
- 7 H. Fischer, J. Schmid und S. Zeuner, Chem. Ber., 120 (1987) 583.
- 8 H. Fischer, J. Schmid und J. Riede, unveröffentlichte Untersuchungen.
- 9 H. Fischer und S. Zeuner, Z. Naturforsch. B, 40 (1985) 954.
- 10 R.G.W. Gingerich und R.J. Angelici, J. Am. Chem. Soc., 101 (1979) 5604.
- 11 H. Fischer, S. Zeuner und H.G. Alt, J. Organomet. Chem., 289 (1985) C21.
- 12 (a) H. Fischer, S. Zeuner und J. Riede, Angew. Chem., 96 (1984) 707; Angew. Chem. Int. Ed. Engl., 23 (1984) 726; (b) H. Fischer, S. Zeuner, U. Gerbing, J. Riede und C.G. Kreiter, J. Organomet. Chem., im Druck.
- (a) H. Fischer, U. Gerbing, J. Riede und R. Benn, Angew. Chem., 98 (1986) 80. Angew. Chem. Int. Ed. Engl., 25 (1986) 78; (b) H. Fischer, J. Organomet. Chem., 345 (1988) 65; (c) H. Fischer, K. Treier, U. Gerbing und J. Hofmann, J. Chem. Soc., Chem. Commun., (1989) 667; (d) H. Fischer, U. Gerbing, K. Treier und J. Hofmann, Chem. Ber., im Druck.
- 14 (a) G.A. Krafft und P.T. Meinke, J. Am. Chem. Soc., 108 (1986) 1314; (b) P.T. Meinke und G.A. Krafft, J. Am. Chem. Soc., 110 (1988) 8671.
- 15 (a) H. Fischer, A. Tiriliomis, U. Gerbing, B. Huber und G. Müller, J. Chem. Soc., Chem. Commun., (1987) 559; (b) H. Fischer, U. Gerbing und A. Tiriliomis, J. Organomet. Chem., 332 (1987) 105; (c) H. Fischer, U. Gerbing, A. Tiriliomis, G. Müller, B. Huber, J. Riede, J. Hofmann und P. Burger, Chem. Ber., 121 (1988) 2095.
- 16 (a) H. Fischer, S. Zeuner, J. Schmid und J. Hofmann in U. Schubert (Hrsg.), Advances in Metal Carbene Chemistry, Kluwer Academic Publishers, Dordrecht, 1989, S. 185; (b) H. Fischer und J. Hofmann, unveröffentlichte Untersuchungen.
- 17 E.O. Fischer, A. Schwanzer, H. Fischer, D. Neugebauer und G. Huttner, Chem. Ber., 110 (1977) 53.
- 18 V. Jäger in Houben-Weyl-Müller (Hrsg.), Methoden der Organischen Chemie 4. Aufl., Band V/2a, Thieme Verlag Stuttgart, 1977, S, 306.
- 19 (a) J. Songstad und L.J. Stangeland, Acta Chim. Scand., 24 (1970) 804; (b) K. Wynne und J. Golen, Inorg. Chem., 13 (1974) 185.